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Nonequilibrium dynamics in an amorphous solid
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The nonequilibrium dynamics of an amorphous solid is studied with a soft-spin model. We show that the
aging behavior in the glassy state follows a modified Kohlrausch-Williams-Watts form similar to that obtained
in Lunkenheimer et al. [Phys. Rev. Lett. 95, 055702 (2005)] from analysis of the dielectric loss data. The
nature of the fluctuation-dissipation theorem violation is also studied in time as well as correlation windows.
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In the glassy state, liquid behaves like a frozen solid with
the motion of its constituent particles being localized around
randomly distributed sites. Analysis of the dynamics in this
nonequilibrium glassy state reveals a variety of phenomena
such as aging and memory effects [1,2]. Important progress
in understanding the nonequilibrium dynamics of the disor-
dered systems has been made in recent years from study of
simple mean-field spin-glass models. In the multispin inter-
action models, the nonlinearities in the Langevin dynamics
give rise [3] to a ergodic-nonergodic (ENE) transition. The
basic mechanism for this transition is very similar to that
present in the models for the dynamics of supercooled lig-
uids [4]. The seminal work of Ref. [5] dealt with the problem
of weak ergodicity breaking [6] in a spherical p-spin (p
>2) interaction model [7] over the asymptotic time scales.
Here the crossing over of the dynamics from a regime of
time translational invariance to that of aging behavior was
demonstrated analytically [8]. Low-temperature properties of
glassy systems, e.g., thermal conductivity and specific heat,
have also been studied with models [9] for the structural
glass built in terms of a standard Hamiltonian involving
spins. In the present paper, we study a soft-spin-type model,
which is defined in terms of the displacements of the par-
ticles around a corresponding set of random lattice points.
We show that the aging behavior in the nonequilibrium
glassy state follows a modified Kohlrausch-Williams-Watts
(MKWW) form similar to that obtained in Ref. [10] from
analysis of the dielectric loss data for several materials below
the glass transition temperature 7.

We consider a model Hamiltonian, which has a transla-
tionally invariant form in terms of the displacement variables
u; around an amorphous structure,

p=2 i#j

For the amorphous solid, the interaction matrix Jﬁf) is as-

sumed to be random following a Gaussian probability distri-

bution of zero mean and variance J,Z)/ N. The microscopic

basis for such a model for an amorphous solid is discussed

further below. The time evolution of u;(r) is given by the
dissipative Langevin equation,
du; oH

Iy — = - B— —z(t)u; + &(1), 2

o = By~ Ak E() @

where I is the bare kinetic coefficient related to the variance

of the Gaussian white noise §; through the fluctuation-
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dissipation relation (&;(z) fj(t’)>=2,8‘11"05ij5(t—t’). For main-
taining the solid state a constraint on the sum of the squares
of the u;’s is imposed. In the present context of the amor-
phous solid state this is equivalent to having a constant Lin-
demann parameter at a fixed temperature 7. In Eq. (2), z() is
a Lagrange’s multiplier used to enforce the constraint
N"E,{uf(t)): 1. We consider in the present work the nonlin-
ear dynamics keeping in H the contributions from the p=2
and 3 terms of expansion (1). This will be referred to as the
p23 model from hereon.

The time correlation and response functions of the dis-
placement variable u; are obtained using the standard Martin-
Siggia-Rose (MSR) [11] field theory. The field #; conjugate
to u; is introduced in this regard to average over the Gaussian
noise &. The two time-correlation and response functions
are, respectively, defined as C(z,1,)=N""S¥ (u,(t)u,(t,)) and
R(t,1,)=N""=X (i()ut,)), where the overbars stand for
averages over the random bonds {Jg-’ )}’s and the angular
brackets represent mean over the Gaussian white noise §&’s.
The dynamics of the correlation and response functions are
obtained from the equations

[d,+z(t)]C(1,t,) = f t ds>.(1,5)C(s,1,,)
0

[w
+ f dsZ2'(t,5)R(t,,s), (3)

0

t

[d,+z(t)]R(¢,1,,) = 8(t - t,,) + J ds2(t,s)R(s,t,), (4)

ty

where we denote Z'(¢,t')=248(t—1")+E(t,t'). The kernels
are obtained from a perturbative summation as E(z,t')
=3pa,CP(1,1') and 3(1,t") =2 p(p—1)a,C"~*(t,1')R(t,1') in
terms of a set of coupling constants {a,}, which depend on
nonlinearities in the dynamic equations. For the p23 model
considered here, we obtain up to one loop order a,
=2(BJ,)* and a;=18(BJ;)*. The necessary boundary condi-
tions for C and R are, respectively, chosen as [5] R(¢,17)=1
and 9,C(t,t")= * 1. The Lagrange’s multiplier z(¢), which
ensures C(¢,1)=1, is obtained as z(r)=1+ [(ds{E(z,5)R(s,1)
+2(t,5)C(t,5)}.

The analysis of the asymptotic dynamics of C(z,t,) for
both ¢ and #,,— o° is divided [5] into two main regimes. First,
for (t-t,)/t—0 the time translational invariance (TTI)
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holds. At this stage C and R are related through the fluctua-
tion dissipation theorem (FDT) Ry(¢)=—0(r)d,Ci(t), where
we denote C(t+t,,t,)=Cy(¢t) and R(r+1,,t,)=R(r). Sec-
ond, for (r—1,)/t~ 1, i.e., for widely separated ¢ and t,,, there
is aging behavior. The correlation and response functions,
respectively, denoted by C, and R, in this case, are assumed
to be functions of 7,/t=N0<A<1). We define C4(t,t,)
=qC(\) and R,(t,t,)=r""R(\). In the limit, \—1, C(\)
— 1, and R(\) #0. The solutions in the FDT and the aging
regimes agree if the long-time limit of Cy(7) is g. The latter is
termed as the nonergodicity parameter (NEP). In the FDT
regime, both Egs. (3) and (4) reduce to a single equation,

t

(c?z+1)C1(t)+f dsEy(t = 5)3,Ci(s) = z[Ci(1) = 1]. (5)
0

The kernel Zj[C]=a,Ci+a;Ci in case of the p23 model.
Except for the linear term on the right-hand side, Eq. (5) is
same as the basic dynamical equation in the self-consistent
mode-coupling theory of the structural glass. The latter rep-
resents the asymptotic dynamics for the time correlation of
the equilibrium density fluctuations in a supercooled liquid.
However, in the present case the nontrivial renormalization
contribution to the transport coefficient comes from the dis-
sipative nonlinearities in Eq. (2), while in the mode-coupling
theory (MCT) for compressible liquids the relevant nonlin-
earity is in the reversible pressure term. From the r— o limit
of Eq. (5) we obtain the following relation:

2 a,(p—1g"?+(1-g)*=0 (6)
>

for the NEP ¢ in terms of the coupling constants a,,.

In the aging regime, the FDT violation is denoted in terms
of a parameter x, which is defined through the relation
R4(t)=x0O(1)3,C4(7) or equivalently R(N)=xq(d/IN)C(N).
We obtain, analyzing Egs. (3) and (4) in the aging regime,
the following relation between x and g:

2 ap(p - z)qp—z

P
=—(1-¢g)————. 7
R s (7)

P

The critical coupling constants {a5,a3} for dynamic transi-
tion in the p23 model are obtained from the solution of Egs.
(6) and (7) as a5=2/Ng—1/\} and a;=1/\], where \o=1
—q. The ergodic-nonergodic transition line is given by a,
[« PP . . . L.
=2+\asz—as. This is identical to the line of dynamic transition
in the ¢, model [12] of the mode-coupling theory of struc-
tural glass transition. Along the line of transition the param-
eter Ao changes from 0 to 0.5 as the NEP changes from 1 to
0. In the ergodic phase, the NEP ¢=0 and the FDT holds
with x=—1. Close to the transition line, the relaxation behav-
ior follows several regimes crossing over from power-law
decay to a final-stretched exponential form. The correspond-
ing stretching exponent B~ is approximated with the empiri-

cal relation Epapqp‘” =1. As ergodicity is restored over
the longest time scale, u(z) grows and the spherical constraint
is eventually violated. The model with an underlying dy-
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FIG. 1. (Color online) The correlation C(¢+1,,,1,,) vs t for a set
of waiting times ¢,’s in the ergodic phase, a,=0.82 and a3=2.0.
Inset shows the exponent BI;IE for final stretched exponential relax-
ation with respect to t,,. Dashed line is the corresponding equilib-
rium value of stretching exponent.

namic transition is thus valid up to the time scales of struc-
tural relaxation.

To get a better understanding of the time scales associated
with the aging dynamics in the intermediate time regime and
the corresponding FDT violation, we solve Egs. (3) and (4)
numerically. This requires integrating Egs. (3) and (4) for
both ¢ and t,, extending over several time decades. We use
the adaptive integration technique [13], which starts with
smaller-sized grids for integration over shorter time scales of
fast relaxation and correspondingly increases the step size for
longer time scales of slow dynamics. In the adaptive integra-
tion method of discrete time steps which increases by factor
of 4, we are able to cover the range f,,=2"A, for m
=15-29. For Ay=1073, the above range corresponds to t,,
~33-536 871. In the ergodic state, at long waiting times f,,
the correlation function approaches its equilibrium value,
and time translational invariance is eventually reached.
In Fig. 1 we display the waiting time dependence of
C(t+1,,1,) with respect to ¢ for the state a,=0.82 and as
=2.02. In the final stage, the decay follows the stretched

exponential form exp[—(z/ ﬂE)BZE] with characteristic relax-

ation time 7.~ and stretching exponent ,BI;’E . The inset of Fig.
1 shows B];’g corresponding to different waiting times ¢,,. At
large t,,, the exponent ,BIZE approaches its equilibrium value
BE. The latter is determined in terms of a, and as using the
empirical relation discussed above.

In the nonergodic state, the numerical solution of Egs. (3)
and (4) displays both FDT and aging behavior. In Fig. 2, the
time dependence of C(t+1,,,t,,) corresponding to a,=0.5 and
a3=6.0 deep in the glassy state is shown for different values
of t,,. Initially the correlation decays from 1 to g, and at this
stage time translational invariance holds. The dynamics is
strongly dependent on ¢, at a later stage. The corresponding
correlation and response functions for large ¢, are scaled
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FIG. 2. (Color online) The correlation C(t+1,,,t,) vs ¢ for a set
of waiting times #,,’s in the nonergodic phase, a,=0.5 and a3=6.0.
Inset shows scaling of different C(¢+1,,2,)’s as a function of
h(t+t,)/h(t,), where h(f) =exp[t'~*/(1- k)], with k=0.96.

with the ansatz: C(t+1,,,t,,)=C[h(t+1,)/h(t,)], where h(z) is
a monotonically ascending function of ¢. The simplest possi-
bility h(f)=t” is termed as the simple aging and implies
C(t,t,) = C(t/t,,). We adopt here the more general form [14]
h(t)=exp[t'~*/(1-k)]. The limit k— 0 implies time transla-
tional invariance, while k— 1 represents simple aging, while
the case 0 <« <1 is termed as subaging. The dynamics al-
most conforms to simple aging behavior as shown in the
inset of Fig. 2 in which different ¢,, data overlap on a single
master curve having k=0.96. This is in agreement with sub-
aging behavior obtained in earlier works [14] on the standard
p-spin model. For every 1, the correlation C(t+1,,t,) de-
cays to zero at sufficiently long ¢. This is termed as weak
ergodicity breaking in the aging regime. Since the correlation
function in the aging regime approximately depends on the
ratio t/1,, (for k=0.96), the corresponding Fourier transform
C(w,t,) is a function of wt,=7,. We define the response
function y,(7,)=wC(w,t,). The waiting time (7,,) depen-
dence of y,,(%,,) for different frequencies does not fit with a
simple stretched exponential form exp[—(¢/7)?] with con-
stant 7 over the whole time range and a frequency indepen-
dent B. On the other hand a good fit is obtained with the
MKWW [10] form

Xo(B) =X = Xoexp{- [7,/7(7,) 1P} + X33, (8)

where the subscripts “st” and “eq,” respectively, refer to the
limits 7,,— 0 and o for y,,. The aging time dependence of 7 is
chosen as

T(;w) = {Tsl - Tfn}f(’t'w) + T (9)

where 7, and 7, are fit parameters independent of frequency
w. The normalized function f(s) is chosen to have limiting
values 1 and O for s — 0 and o, respectively. In particular, we
make the choice [15] f(s)=a,/[1+exp{s/ 7(s)}?], where q,

=2F is a normalization constant. Using this form of the 7(7,,)
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FIG. 3. (Color online) Scaled function (x,(%,)=x9/(x%-x59)
vs 1,, for frequencies w=wy2™" with m=0 (circle), 2 (square), 4
(diamond), 6 (triangle up), 8 (triangle down), 10 (star), and 12
(cross). wy=0.13 in units of T'y (see text). Solid line is a fit to
MKWW form (see text) with 8=0.50. Inset show the variation in
the 7(7,,) with 7,,, following the scheme of Ref. [15] (solid) and Ref.
[10] (dashed).

we have fitted x,(7,) for all the different frequencies with a
single (frequency-independent) stretching exponent B. In
Fig. 3, a scaled plot of the different frequency data with
respect to 7,, is displayed. The data sets for all the frequencies
merge on a single master curve with $=0.50 shown as a
solid line. The frequency range over which the data are fitted
is restricted by two limiting conditions. @ should be below
the microscopic peak in x, representing the short-time dy-
namics. On the other hand on the low-frequency side w is
restricted by the maximum time to which we can extend the
numerical solution scheme. In the present theoretical calcu-
lation, we are able to cover the range f,,=2"A, for m=29-
42, for Ay=10"7, the above range equals to t,
~54-439 805 covering the corresponding frequency range
from 107! to 1075 in the dimensionless units of the bare
transport coefficient I'. For the dielectric loss data, Lunken-
heimer et al. in Ref. [10] use a somewhat different fitting
scheme with the f(s) in Eq. (9) being a stretched exponential
function exp{-[s/r{(s)]#}. Relaxation data when fitted with
this scheme obtain the exponent (also frequency indepen-
dent) 8=0.48. In the inset of Fig. 3, the 7’s from both of the
above described fitting schemes are displayed. Both fitting
schemes suggest qualitatively similar behavior in which ag-
ing accelerates with time. After the initial stage the waiting
time dependence of the response function is close to the
simple KWW with a constant relaxation time.

We now consider the FDT violation in the nonequilibrium
state. The latter is generalized in terms of a quantity X(z,¢")
(for t>1") as kzTR(t,t')=X(t,1')dC(t,1')/d¢'. In the limit
t,t' —oo, it is assumed that X(¢,¢")=x[C(z,1')] representing
FDT violation in the correlation windows rather than time
windows. For convenience of discussion, an integrated re-
sponse function F(z,7') is defined
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' 1
F(t,t’)E—f dsR(t,s):—Lf x(C)dcC. (10)
t' kgT J ¢
If the FDT holds, x=—1 and the above relation reduces to
kgTF(1)=C(r)—1, using C(z,t)=1. An effective temperature
Tt for the nonequilibrium state is defined in terms of the
ratio of the Fourier transforms, kzTF(w,t,)/C(w,t,). If the
FDT holds, T.=1. Using relation (7), we obtain that the
choice a,=0.5 and a3=3.0 in the p23 model makes 7.4 close
to the experimental result of Ref. [16]. More importantly, the
time scale of 7,, over which the cross over from the FDT to
the aging regime occurs according to the present model is
comparable with experimental observations as shown in Fig.
4. We also display in the inset of this figure the FDT viola-
tion corresponding to the case of Fig. 2 as seen from the
correlation windows. This is similar to results [17] from mo-
lecular dynamics simulations of the binary Lennard-Jones
mixtures.

The present model for an amorphous solid can be justified
from a semimicroscopic basis. The potential energy is ex-
pressed as a Born—von Karman-type expansion of the coor-
dinates {r;} of the N particles,

! !
H=215f)”iuj+2-]$k)“iujuk+ o+ Guy), (11)
ij ijk

where ri=r?+u,-. The primes in the summations in the right-
hand side indicate that the terms having all the corresponding
running indices i,j,k, etc. being the same are absent. In the
case of the amorphous solid, {r?} constitute a random struc-
ture corresponding to a local minimum of potential energy
and u; is the displacement of the ith particle from its parent
site. The expansion in terms of u;’s is valid over the time
scale of the structural relaxation. The single-site potential
G(u;) [9] in the right-hand side of Eq. (11) is being included
to stabilize the system. We will approximate U=2,;_;¢;; as a
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FIG. 4. (Color online) Effective temperature T,g (see text) vs
waiting times 7, for w=107> (filled circle), 3 X 107 (open circle),
and 5X107* (filled square) in units of. Solid line corresponds
to best-fit curve of theoretical results. Experimental data of
Ref. [16] shown with filled triangles. Inset shows —F(t+t,,,t,,) vs
C(t+1,),1,, corresponding to the data of Fig. 2. The slope in the
FDT violation regime is x=-0.465.

sum of two-body potentials and write the potential energy in
the translationally invariant form given by Eq. (1) by assum-
ing J2)=J0 8,410 8,408, JP=(-1)PJP), etc. For
reaching expression (1) the coefficients of the single-site
term  G(u;)=S{wou? +wsu+---} are chosen as  wy
=—E;J§2), WSiZ_E](,sz(‘;k)’ etc. The semimicroscopic interpre-
tation described above is useful in linking the model with
thermodynamic parameters [18]. This will test further the
possibility of using the mode-coupling approach to study the
complex dynamics of the nonequilibrium state of an amor-

phous solid.
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